The feasibility of atlas‐based automatic segmentation of MRI for H&N radiotherapy planning

نویسندگان

  • Kieran Wardman
  • Robin J.D. Prestwich
  • Mark J. Gooding
  • Richard J. Speight
چکیده

Atlas-based autosegmentation is an established tool for segmenting structures for CT-planned head and neck radiotherapy. MRI is being increasingly integrated into the planning process. The aim of this study is to assess the feasibility of MRI-based, atlas-based autosegmentation for organs at risk (OAR) and lymph node levels, and to compare the segmentation accuracy with CT-based autosegmentation. Fourteen patients with locally advanced head and neck cancer in a prospective imaging study underwent a T1-weighted MRI and a PET-CT (with dedicated contrast-enhanced CT) in an immobilization mask. Organs at risk (orbits, parotids, brainstem, and spinal cord) and the left level II lymph node region were manually delineated on the CT and MRI separately. A 'leave one out' approach was used to automatically segment structures onto the remaining images separately for CT and MRI. Contour comparison was performed using multiple positional metrics: Dice index, mean distance to conformity (MDC), sensitivity index (Se Idx), and inclusion index (Incl Idx). Automatic segmentation using MRI of orbits, parotids, brainstem, and lymph node level was acceptable with a DICE coefficient of 0.73-0.91, MDC 2.0-5.1mm, Se Idx 0.64-0.93, Incl Idx 0.76-0.93. Segmentation of the spinal cord was poor (Dice coefficient 0.37). The process of automatic segmentation was significantly better on MRI compared to CT for orbits, parotid glands, brainstem, and left lymph node level II by multiple positional metrics; spinal cord segmentation based on MRI was inferior compared with CT. Accurate atlas-based automatic segmentation of OAR and lymph node levels is feasible using T1-MRI; segmentation of the spinal cord was found to be poor. Comparison with CT-based automatic segmentation suggests that the process is equally as, or more accurate, using MRI. These results support further translation of MRI-based segmentation methodology into clinicalpractice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of state-of-the-art atlas-based bone segmentation approaches from brain MR images for MR-only radiation planning and PET/MR attenuation correction

Introduction: Magnetic Resonance (MR) imaging has emerged as a valuable tool in radiation treatment (RT) planning as well as Positron Emission Tomography (PET) imaging owing to its superior soft-tissue contrast. Due to the fact that there is no direct transformation from voxel intensity in MR images into electron density, itchr('39')s crucial to generate a pseudo-CT (Computed Tomography) image ...

متن کامل

Neural Network-Based Learning Kernel for Automatic Segmentation of Multiple Sclerosis Lesions on Magnetic Resonance Images

Background: Multiple Sclerosis (MS) is a degenerative disease of central nervous system. MS patients have some dead tissues in their brains called MS lesions. MRI is an imaging technique sensitive to soft tissues such as brain that shows MS lesions as hyper-intense or hypo-intense signals. Since manual segmentation of these lesions is a laborious and time consuming task, automatic segmentation ...

متن کامل

Automatic Prostate Cancer Segmentation Using Kinetic Analysis in Dynamic Contrast-Enhanced MRI

Background: Dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) provides functional information on the microcirculation in tissues by analyzing the enhancement kinetics which can be used as biomarkers for prostate lesions detection and characterization.Objective: The purpose of this study is to investigate spatiotemporal patterns of tumors by extracting semi-quantitative as well as w...

متن کامل

Automatic segmentation of glioma tumors from BraTS 2018 challenge dataset using a 2D U-Net network

Background: Glioma is the most common primary brain tumor, and early detection of tumors is important in the treatment planning for the patient. The precise segmentation of the tumor and intratumoral areas on the MRI by a radiologist is the first step in the diagnosis, which, in addition to the consuming time, can also receive different diagnoses from different physicians. The aim of this study...

متن کامل

A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI

Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016